Data - Probability Trees Jan has two boxes. There are 6 black and 4 white counters in box A. There are 7 black and 3 white counters in box B. Jan takes at random a counter from box A and puts it in box B. She then takes at random a counter from box B and puts it in box A. (a) Complete the probability tree diagram. (b) Find the probability that after Jan has put the counter from box B into box A there will still be 6 black counters and 4 white counters in box A. (2) ## Data - Probability Trees Jan has two boxes. There are 6 black and 4 white counters in box A. There are 7 black and 3 white counters in box B. Jan takes at random a counter from box A and puts it in box B. She then takes at random a counter from box B and puts it in box A. (a) Complete the probability tree diagram. (b) Find the probability that after Jan has put the counter from box B into box A there will still be 6 black counters and 4 white counters in box A. For number of black and white counters to remain unchanged, we need black-black or white-white $$\frac{48}{110} + \frac{16}{110} = \frac{64}{110} \text{ or } \frac{32}{55}$$ $$\frac{32}{55}$$ (4)