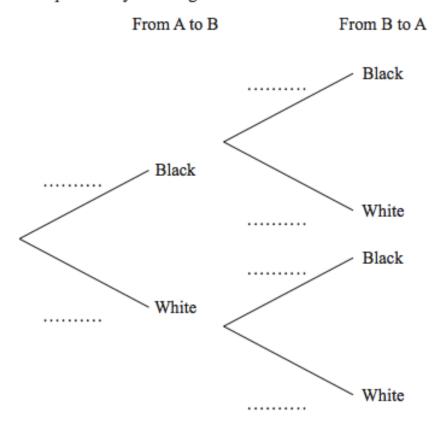
Data - Probability Trees

Jan has two boxes.


There are 6 black and 4 white counters in box A.

There are 7 black and 3 white counters in box B.

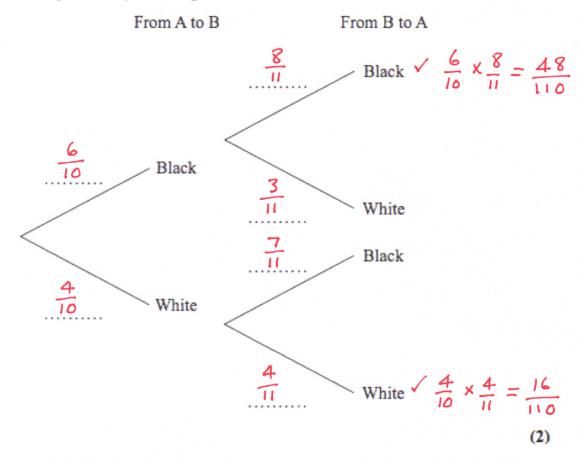
Jan takes at random a counter from box A and puts it in box B.

She then takes at random a counter from box B and puts it in box A.

(a) Complete the probability tree diagram.

(b) Find the probability that after Jan has put the counter from box B into box A there will still be 6 black counters and 4 white counters in box A.

(2)


Data - Probability Trees

Jan has two boxes.

There are 6 black and 4 white counters in box A. There are 7 black and 3 white counters in box B.

Jan takes at random a counter from box A and puts it in box B. She then takes at random a counter from box B and puts it in box A.

(a) Complete the probability tree diagram.

(b) Find the probability that after Jan has put the counter from box B into box A there will still be 6 black counters and 4 white counters in box A.

For number of black and white counters to remain unchanged, we need black-black or white-white

$$\frac{48}{110} + \frac{16}{110} = \frac{64}{110} \text{ or } \frac{32}{55}$$

$$\frac{32}{55}$$
(4)