Algebra - Proof

Q1

Prove, using algebra, that the sum of two consecutive whole numbers is always an odd number.

(Total 3 marks)

Q2

Prove that $(3n+1)^2 - (3n-1)^2$ is a multiple of 4, for all positive integer values of n.

(Total 3 marks)

Q1

Prove, using algebra, that the sum of two consecutive whole numbers is always an odd number.

(Total 3 marks)

Q2

Prove that $(3n+1)^2 - (3n-1)^2$ is a multiple of 4, for all positive integer values of n.

$$(3n+1)^{2} - (3n-1)^{2}$$

$$= [(3n+1)(3n+1)] - [(3n-1)(3n-1)]$$

$$= [9n^{2} + 6n + 1] - [9n^{2} - 6n + 1]$$

$$= 9n^{2} + 6n + 1 - 9n^{2} + 6n - 1$$

$$= 12n$$

$$= 4(3n)$$
Since 3n is also an integer this is a multiple of 4

(Total 3 marks)