Integration by parts
Ex 1

$$
\int 3 x \sin 4 x d x \quad \text { Using } \int \frac{u d v}{d x}=u v-\int v \frac{d u}{d x}
$$

Let $u=3 x$
Let $\frac{d v}{d x}=\sin 4 x$

$$
\Rightarrow \frac{d x}{d x}=3
$$

$$
\Rightarrow \quad v=-\frac{1}{4} \cos 4 x
$$

$$
\begin{aligned}
\int 3 x \sin 4 x d x & =-\frac{3}{4} \cos 4 x+\int \frac{3}{4} \cos 4 x d x \\
& =-\frac{3}{4} \cos 4 x+\frac{3}{16} \sin 4 x+c
\end{aligned}
$$

Integration by parts
Ex 2

$$
\int(2 x-3) e^{5 x} d x
$$

$u \operatorname{sing} \int v \frac{d v}{d x}=u v-\int v \frac{d u}{d x}$
$\begin{aligned} \text { Let } u & =2 x \\ \Rightarrow \frac{d u}{d x} & =2\end{aligned}$
Let $\quad \frac{d v}{d x}=e^{5 x}$

$$
\begin{aligned}
& \Rightarrow \frac{d v}{d x}=2 \\
& \int(2 x-3) e^{5 x} d x=(2 x-3) \frac{1}{5} e^{5 x}-\int \frac{2}{5} e^{5 x} d x \\
&=\left(\frac{2 x-3}{5}\right) e^{5 x} \\
&=\left(\frac{10 x-15}{25}\right) e^{5 x}-\frac{2}{25} e^{5 x}+c \\
&=\left(\frac{10 x}{25} e^{5 x}+c\right. \\
&=17) e^{5 x}+c
\end{aligned}
$$

INTEGRATION BY PARTS

$$
E \times 3
$$

$$
\int x^{3} \ln x d x
$$

using $\int \frac{u d v}{d x}=u v-\int v \frac{d u}{d x}$
Let $u=\ln x$
Let $\frac{d v}{d x}=x^{3}$

$$
\begin{aligned}
\Rightarrow \frac{d u}{d x}=\frac{1}{x} & \Rightarrow v=\frac{x^{4}}{4} \\
\int x^{3} \ln x d x & =\frac{x^{4}}{4} \ln x-\int \frac{x^{4}}{4} \cdot \frac{1}{x} d x \\
& =\frac{x^{4}}{4} \ln x-\int \frac{x^{3}}{4} d x \\
& =\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}+c
\end{aligned}
$$

Integration by parts
Ex 4

$$
\int \frac{1}{x^{3}} \ln (5 x) d x
$$

$$
\text { using } \int u \frac{d v}{d x}=u v-\int v \frac{d u}{d x}
$$

Let $u=\ln (5 x)$
Let $\frac{d r}{d x}=\frac{1}{x^{3}}=x^{-3}$

$$
\Rightarrow \frac{d u}{d x}=\frac{5}{5 x}=\frac{1}{x}
$$

$$
\Rightarrow \quad v=\frac{x^{-2}}{-2}=-\frac{1}{2 x^{2}}
$$

$$
\begin{aligned}
\int \frac{1}{x^{3}} \ln (5 x) d x & =-\frac{1}{2 x^{2}} \ln (5 x)+\int \frac{1}{2 x^{2}} \cdot \frac{1}{x} d x \\
& =-\frac{1}{2 x^{2}} \ln (5 x)+\int \frac{1}{2 x^{3}} d x \\
& =-\frac{1}{2 x^{2}} \ln (5 x)+\int \frac{x^{-3}}{2} d x \\
& =-\frac{1}{2 x^{2}} \ln (5 x)+\frac{x^{-2}}{2(-2)}+c \\
& =-\frac{1}{2 x^{2}} \ln (5 x)-\frac{1}{4 x^{2}}+c
\end{aligned}
$$

Integration by parts
Ex 5

$$
\int_{0}^{\frac{\pi}{3}} x \cos x d x
$$

using $\int \frac{u d v}{d x}=u v-\int v \frac{d u}{d x}$

Let $u=x$
Let $\frac{d r}{d x}=\cos x$

$$
\Rightarrow \frac{d v}{d x}=1 \quad \Rightarrow v=\sin x
$$

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{3}} x \cos x d x=[x \sin x]_{0}^{\frac{\pi}{3}}-\int_{0}^{\frac{\pi}{3}} \sin x d x \\
& =[x \sin x]_{0}^{\frac{\pi}{3}}-[-\cos x]_{0}^{\frac{\pi}{3}} \\
& =\left[\frac{\pi}{3} \sin \frac{\pi}{3}-0 \sin \Delta\right]-\left[-\cos \frac{\pi}{3}-(-\cos 0)\right] \\
& =\frac{\pi}{3} \times \frac{\sqrt{3}}{2}-0+\frac{1}{2}-1 \\
& =\frac{\sqrt{3} \pi}{6}-\frac{1}{2}
\end{aligned}
$$

Integration by parts
$E \times 6$

$$
\int_{0}^{1} 2 x e^{x+1} d x
$$

using $\int \frac{u d v}{d x}=u v-\int v \frac{d u}{d x}$

Let $u=2 x$
Let $\frac{d v}{d x}=e^{x+1}$

$$
\Rightarrow \frac{d v}{d x}=2
$$

$$
\Rightarrow v=e^{x+1}
$$

$$
\begin{aligned}
\int_{0}^{1} 2 x e^{x+1} d x & =\left[2 x e^{x+1}\right]_{0}^{1}-\int_{0}^{1} 2 e^{x+1} d x \\
& =\left[2 x e^{x+1}\right]_{0}^{1}-\left[2 e^{x+1}\right]_{0}^{1} \\
& =\left[2 e^{2}-0\right]-\left[2 e^{2}-2 e\right] \\
& =2 e^{2}-2 e^{2}+2 e \\
& =2 e
\end{aligned}
$$

Integration by parts
Ex $7 \quad \int_{1}^{2} 4 x \ln x d x$
using $\int \frac{u d v}{d x}=u v-\int \frac{v}{d x}$

Let $u=\ln x$
Let $\frac{d y}{d x}=4 x$

$$
\begin{aligned}
& \Rightarrow \frac{d u}{d x}=\frac{1}{x} \\
& \int_{1}^{2} 4 x \ln x d x=\left[2 x^{2} \ln x\right]_{1}^{2}-\int_{1}^{2} 2 x^{2} \cdot \frac{1}{x} d x \\
& =\left[2 x^{2} \ln x\right]_{1}^{2}-\int_{1}^{2} 2 x d x \\
& =\left[2 x^{2} \ln x\right]_{1}^{2}-\left[x^{2}\right]_{1}^{2} \\
& =[8 \ln 2-2 \ln 1]-[4-1] \\
& =8 \ln 2-0-4+1 \\
& =8 \ln 2-3
\end{aligned}
$$

